Performance Modeling for Grid-Based Visualization

lan Bowmart® John Shaf Kwan-Liu Mat
lUniversity of California at Davis ?Lawrence Berkeley National Laboratory
{bowman,ma@cs.ucdavis.edu jshalf@Ibl.gov

Abstract This type of problem is well suited for a Grid-based
approach [11] where distributed computational and stor-
The visualization of large, remotely located data sets Nege resources are employed to reduce the data movement
cessitates the development of a distributed computing a manageable size. Distributed visualization is hardly
pipeline in order to reduce the data, in stages, to a maa-new concept, but in practice, most available examples
ageable size. The Grid offers the baseline infrastructui distributed workflows offer limited flexibility, target
for launching this distributed pipeline, but it offers fewa very narrow range of infrastructure, and employ com-
services that support even marginally optimal resourcgaratively static distribution of the computation. Man-
selection and partitioning of the data analysis workflowyal resource selection for Virtual Organizations (VOS)
We explore a methodology for building a model of overwith even a modest number of services can quickly be-
all application performance using a composition of theome impractical. Even with the simplest of workflows,
analytic models of individual components that comprise: is very easy to select a workflow partitioning where the
the pipeline. The analytic models are shown to be agerformance of the distributed pipeline is actually worse
curate on a testbed of distributed heterogeneous systerfan simply running a monolithic application in a single
The prediction methodology will form the foundation of jocation. Unless we develop reliable automated methods
a more robust resource management service for futute select appropriate visualization pipeline distributions,
Grid-based visualization applications. we stand very little chance of deriving any tangible ben-
efit from the Grid computing infrastructure.

1 Introduction The foundation of an effective distributed application
manager is the ability to select appropriate resources and
In scientific analysis and visualization, scientists or reaccurately rank the predicted performance of various dis-
searchers would often like to use their desktop workstaribution options. Accurate performance prediction re-
tions to visualize data located at a remote site such asgaires accurate performance models of the components
supercomputer center. With large datasets, it is imprathat comprise a distributed applicatitiefore they are
tical, or impossible to download the entire dataset to thiaunched. There is considerable work in performance
workstation and visualize it. However, it has been obmodeling for numerical simulations that employ iterative
served that visualization is a process of data reduction-mesh-based methods [1], but comparatively little work
taking large quantities of data and using visual methods tn selecting appropriate performance models for interac-
reduce them to their essential, comprehensible qualitietive visualization applications. Prior work in this field
Each stage of the visualization pipeline can potentiallyras identified many approaches to performance modeling
be used to reduce the total size of the data in a progreisicluding analytic [7], heuristic/statistical [10], and even
sive/staged fashion. The benefits of data reduction on thestory-based methodologies [9], but it is not clear which
distributed pipeline must be balanced against the latemethod is best suited for the unique characteristics of
cies inherent in remotely located components; thus, attistributed visualization applications. Performance mod-
optimal partitioning must consider pipeline distributionseling for visualization applications poses a special chal-
that are not necessarily a simple client-server divisiorlenge because performance is extremely dynamic and in-
Therefore, somewhere between the remote site and logalt dependent. For example, assuming we are trying to
workstation a distributed visualization pipeline must banodel the performance of an isosurface algorithm, even
constructed that is optimally partitioned so as to delivewith the same dataset, different isolevels can produce iso-
the highest effective performance to the user. surfaces with dramatically different numbers of triangles.

Read Isosurface Offscreen Displ
File eader Extraction Renderer Leplay Screen
Image
Triangle Image
List Data

Figure 1: Components and Data flow for visualization pipeline.

Different time steps of the same dataset will result imamic resource requirements on the part of the applica-
vastly different quantities of extracted triangles even afons. The adaptivity of the application, is mostly con-
the same isolevel. These different number of trianglened to discrete events like "contract violations” and their
result in radically different performance characteristicsassociated job migration for tightly-coupled parallel ap-
This is very different from performance analysis of sim-plications or management task-farming engines that sup-
ulation codes and mesh partitioning where the workloagort embarrassingly parallel application scenarios.
remains essentially static through the lifetime of a simu- Visualization, by contrast, offers a considerably more
lation. - _ dynamic and complex resource utilization profile. Small
In this paper we present a method for modeling an@hanges in the input parameters to some visualization al-
predicting the performance of visualization stages, angorithms can result in huge changes in both execution
ulimately the entire visualization pipeline, using anime and amount of generated data. Consequently opti-
analytic model. Our approach is targeted at modyyg| partitioning for these pipelines can change dramati-
lar component-based visualization workflows similar tq)ly quring execution. Therefore, existing work on data-
VTK and OpenDX; therefore, each stage of the visualizgyarajle| partitioning strategies may not be directly rele-
tion pipeline is handled by a component and each compnt to distributed visualization pipelines. It is our inten-
ponent is modeled individually. These components cafiyn, 1o evaluate the applicability of existing performance
be distributed across many machines, even ones with difegiction methods to this application scenario. In this
ferent 'architectures. First we develop a methodology foﬁaper, we focus almost exclusively on analytic methods.
modeling the performance of these components on ogytyre work will compare the efficiency, accuracy, and
testbed machines using a minimal number of input afmitations of the three primary performance prediction

tributes. Then we combine the performance predictiongchnigues: analytic, heuristic/statistical, and historical.
for individual components with network performance in-

formation to facilitate the prediction of overall pipeline
performance for the composite application. Our experi

mental results show that the actual performance of bofﬂ
P such a methodology is the Dynamic Statistical Projec-

the individual components and the overall visualizatio? .)
pipeline agrees with the predicted performance to a higttﬁOn Pur;un method of Vetter and Regd .[10]’ and UCSD's
degree of accuracy. race driven MAPS system [14]. Statistical methods tend
to overlap with heuristic techniques like sgmat that rely
on tunable microbenchmarks to characterize a given ma-
2 Related Work chine for a given set of algorithm techniques [13]. First

an algorithm is characterized by its pattern of memory

Modeling of mesh-based parallel scientific application&éférences and computational intensity. Then one uses a
has garnered the bulk of attention from the performancéimPplified code that derives a set of parameters that char-
analysis community. The computational load for thes@cte_rlze a given farchltecture. These parameters are then
applications typically does not change considerably duf€d into a statistical model that can predict the perfor-
ing execution. Only recently has there been considefance of the original algorithm on an architecture with-
able effort to model dynamically adaptive applicationUt actually running it there. Much of this work is highly

in heterogeneous environments [1, 2, 3]. Efforts like th&*Perimental and still under development.

Grid Application Development System (GrADS) [7] have One can make reasonably accurate predictions of com-
been driven by the highly dynamic, heterogeneous angbnent performance using historical logs of performance
lossy nature of the Grid infrastructure more than by dyinformation. A good example of a history-based per-

Statistical/heuristic methods attempt to reduce the size
of the performance metric space and complexity of the
odel by employing statistical correlations. Examples

Figure 2: Left: turbulent jet data, 104129 129 voxels. Middle: CT head data, 258256 x 240 voxels. Right:
Argon bubble data, 648 256x 256 voxels.

formance prediction method is Rich Wolski’s Network There exist visualization applications that allow the
Weather Service (NWS) [9] which uses historical patternaser to distribute the visualization process into a pipeline.
in network traffic to predict current network congestionThe predominant drawback with existing mainstream im-
conditions. There is often considerable variability in theplementations is that the pipeline partitioning must be
accuracy of these predictions, but sometimes they can aene manually. This requires the user to have fairly de-
tually perform better than analytic models because it catailed knowledge of the machines available, in order to
take into account unexpected input parameters that reldtaow which resource is appropriate to handle a particu-
to social/behavioral patterns of the people who use tHar component—an impractical requirement for a typical
computing infrastructure. However, creating a historicaproduction environment.

model requires monitoring of real usage patterns. In our Current remote visualization applications typically
situation, we would have to instrument a widely used proemploy two different partitioning strategies. With one
duction code in a completely non-invasive manner to cokype, all of the visualization computations are handled by
lect real historical data in order to build our model—athe server containing the dataset, and only the image data
difficult proposition at best. is sent to the workstation [4]. For the other type, a subset

of the dataset is sent from the server to the workstation,

Analytic methods, perhaps the most common and dighjch handles the local visualization [5]. There are two
rect technique in performance modeling, attempt to d&;roblems with applying this approach to the Grid. One is
rive an equation that can predict an algorithm's perforgyt the desirability of one pipeline setting over the other
mance using a minimal set of input parameters. Examplggay change at run time. The other, more obvious, prob-
include the latency-based model employed for modelingyy is that with a large number of resources available,

the performance of sparse-matrix kemels [12]. In pragt may be impractical to perform the resource selection
tice, it is quite difficult to find a minimal set of truly in- manually.

dependent parameters—resulting in very complex mod-

els. A model with too many parameters can be very dif-

ficult to validate as well because the parameter space a@ Application

dependent performance metric space can be very large.

The applicability of the results can be quite architectureA popular paradigm for representing visualization work-
specific, thereby limiting their relevance. However, theyflows is the data-driven dataflow component pipeline.
offer the most direct approach to developing a predictivExamples of systems that use this execution paradigm
performance model for our components. By limiting then distributed environments include tools such as AVS,
scope of our experiments to a simple isosurfacer worl@penDX, and VTK. For the purpose of this paper, we
flow, we were able to develop an analytic model with thenodel the performance of a Grid-based isosurface visu-
fewest possible degrees of freedom. Over time, we wiklization pipeline. We selected this particular restricted
try to compare these results to alternative methods likease because of its simplicity, its pervasive use in scien-
the statistical/heuristic methodology. tific and engineering applications, and because of its rel-

Filename | tpred | treal \

head 8.51221 | 9.20764
tjet 0.936621| 0.773664
argon bubble| 22.6992 | 19.5653
25 - head 20.3151 | 24.005
I Reader Pred Time tjet 2.23533 | 1.79591
7| mReader Reai Tme argon bubble| 54.1736 | 49.3847
R head 17.0898 | 15.6898
£ ol tiet 1.88044 | 1.87067
argon bubble| 45.5728 | 43.598
51 head 296.865 | 320.254
ol tjet 32.6649 | 27.7808
head tiet argon argon bubble| 791.641 | 679.918

File
Figure 3: The graph on the left shows the predicted and real times for Reader on troutlake. The table on the right
contains the Reader times for all four machines. From top to bottom, the times correspond to machines troutlake,
escher, millwood, and seaborg respectively.

evance to a variety of similar stencil-based visualizatiosults are only applicable to the data-driven sequential ex-
algorithms that produce geometric output. This pipeline@cution paradigm, but eventually we will be able to apply
has four different stages, which are Reader, Isosurfat¢ke resulting component performance models for future
Extractor, Off-screen Renderer and Display. The comwork that employs queuing theory to generalize the per-
ponents are designed such that they can be compodedmance model enough to accommodate asynchronous
in any topological distribution of network-connectedsystems.

compute resources in a location-independent manner—Assuming all components are distributed among vari-
communicating via the fastest available method. When

o ous machines, the component interaction and data flow is
communicating locally, the components exchange dafa

Using a pointer hand-off in the same application space fas follows. First the Reader opens a dataset file and uses
gap PP pace. |X}o initialize a 3D grid dataset. The 3D grid is serialized

the distributed case, data is serialized and sent to the NEXt 1 its packets are sent to the Isosurface Extractor. The
machine via TCP packets. Associated with the Read P '

r - :
is a 3D Grid dataset, associated with the Isosurface E()?(tg,osurface_ Extraptor deserializes the 3p grid, and uses
. . : . It (along with an isovalue) to create the isosurface trian-
tractor is a Triangle List, and with the Renderer an Image : I . .
Buffer. Figure 1 shows such a pipeline gles. These triangles are used to initialize a Triangle List
’ ’ which is serialized as before, and sent to the Renderer.
. . . The Renderer renders the triangles in the Triangle List
We restrict ourselves to an execution paradigm where L :
. . . .~ and stores this image to the Image dataset. It then serial-
each component is activated in sequence along the direc- : . .
. L izes the Image Dataset and sends it to the Display, which
tion of the forward dataflow dependencies in responsé e : .
: : . .~simply deserializes and displays the image server data.
to any changes in component inputs. This execution
paradigm is typical of visulization workflows. Some While the objective of our work is to predict the per-
visualization applications also support an asynchronodsrmance of visualization tools that employ data-driven
pipelined execution model for its out-of-core methodsyisualization workflows, the actual target systems are far
however, modeling such an execution scenario requiréso complex to instrument in an effective and timely
incorporation of queuing theory in addition to the analytionanner. Therefore, we developed our own simplified
models for each component. Since both execution scpipeline that provides functionally equivalent operations.
narios must be composed from the performance modelhe simpler pipeline greatly accelerated our ability to in-
of individual components, we have chosen to focus owstrument the components and understand the result with

initial work on the simpler of the two cases. Thus, our rea minimum of engineering complexity; however, we are

2500 + 3500

mm Predicted Number Tris
— Actual Number Tris 3000

2000 +

1500 +

- N N
33 =] a
=} S =3
S} S S

1000 +

Triangle Count (x 1000)
Triangle Count (x 1000)

500 +

min max
Isolevel

Isolevel

Figure 4: Predicted triangle counts and actual triangle counts for argon bubble(left), and head(right) datasets. Predicted
number shown as blue bars and actual number drawn as red curve. 255 samples taken at regular intervals from
minimum to maximum. The predicted and actual values are so close that it is hard to differentiate.

confident that our results can be applied to the more conb;- size represented ks number (as in amount) is repre-
plex applications. sented byn, and constant is represented®@y

4 Performance Model 4.1 Reader

Each of the components have a fully parameterized peT_he time nee_ded_ for a file to be read off disk is dominated
formance model that contain many machine-dependeRY the 3D gnd. size. Hence, the performance model for
coefficients. We use a series of benchmarks to appro§2—ur reader is simply
imate the correct values for these coefficients.

Once the performance of the various components can treader("W) = M X Creader @)
be modeled, additional network information must still be
gathered to predict overall pipeline performance. oufherenv =xxyxz(x, y and z, represent the dataset
technique for collecting this data is straightforward andlimension, in voxels), an@eader is computed by first
discussed below. simply opening a variety of datasets and recording the

We use the following notation. Time is represented b jme spent for each open. Using the_ known file sizes, we
ind an averag€cager for each machine.

M lso Pred Time 18 1
54 16 -
M so Real Time 14 |
4 =
© 124
] F=
E 3 W10 4
" g
& 87
2 56
1 4 1
2 -
0 - 0 T T 1
S PRSPPI R TP PRSP S 10 1,000 100,000 10,000,000
R S R R
Number of Triangles Number of Triangles (Log Scale)

Figure 5: Predicted and real times for isosurface extra&'9ure 6: Percentage error of predicted time for the iso-
tion on troutlake. surface extraction. Data for graph collected from all ma-
chines on which the isosurfacer modeling tests were run.

4.2 |sosurface Extractor

The performance model for isosurface extraction is the

most complicated of the component models. We used 18- o Render Pred Time

the Marching Cubes algorithm [6] for our Isosurface Ex- 161

tractor component. After a series of benchmarks, we de- 141 i Render Real Time

termined that the isosurface extraction performance was 1.2 1

based on the number of triangles extracted rather thanon g 11

the number of cells intersected by the surface. Thatis, the ¥ 038

more triangles generated due to the isolevel, the longer 06

the isosurface extraction takes. The number of triangles g:

generated ranges from one to five per cell intersected, de- ol e m .
pending on the case. This leads to significant difficulty O I S S A S
in predicting ahead of time the isosurface extraction per- ST @S T T e Vet
formance for a triangle based model. Also, even if no Number of Triangles

triangles are generated, time is still consumed marching

through the dataset inspecting cells. No additional opti-) .

mization for speeding up cell sending is applied. Hencéflgure 7: Predicted and real times for off-screen render-

there is a base cost, which is determined by the size of ¢i§a0 on troutlake.

3D grid dataset. Our performance model is therefore

tiso(Ne, M) = baseny) +n x Ciso, (@) we have one machine serialize and deserialize a dataset,

while the other deserializes and serializes that same

dataset. In order to find Bri, we use the above procee-
re with a 3D grid dataset. In order to find Bio, we use a
iangle List, and to find Bod we use a triangle list. The

where base cost is modeled withs€n,) = ny x Cpase
where Cyase is computed by first of all using our Iso-
surface Extractor on datasets of various sizes and usi

isovalues that do not generate any triangles. We use t work perf del d N of ;
times recorded to find an avera@g,se value. We use network performance model does not account for proto-
col behavior such as TCP slowstart, loading, or latency

a similar method to fin€isy: We simply record the time .
spent computing isosurfaces that generate a varying nuftects. While the performance model for the network

ber of triangles. Later we use these times to find an avel n_ot_ as SOph'St!Cated as 't. com_JId be, it has proven to be
age value foCiso. sufficient to predict the application performance.

4.3 Off-screen Renderer 5 Performance Model Tests

The off-screen render time is dominated by the numb

of triangles being rendered. Hence our model is eI[o test our models we used the following four machines.

A single shared node of an IBM SP Nighthawk Il run-
trender(Nk) = Nt X Crender+ treadback 3) ning AIX. This node has 16 375MHz Power 3+ proces-
sors with 16GB of shared memory. From this point we
wheretreadbackis found by recording the time spent read-will refer to this machine as seaborg. We also used a
ing the frame buffer after rendering no triangles, angingle node of Silicon Graphics Onyx 3400 with 12 600
where to findCenger We first record the times spent ren-MHz IP35 processors and 24 GB of memory. We'll re-
dering various amounts of triangles, and use those timéer to this machine as escher. We also used a PC running

to find an average value. Linux with 2GB of memory (known as troutlake) that has
an Intel Xeon running at 3GHz and a ATl Radeon 9700
4.4 Network graphics card. Finally, we used a different PC (known as

millwood) with 1.5GB of memory, a Pentium 4 CPU run-
We are interested only in the following three bandhing at 1.9GHz, and an nVidia GeForce 4 graphics card.
widths, Reader-Isosurfacer (Bri) measurediteysec Three datasets were used for our tests. One contains
Isosurfacer-Renderer (Bio) measuredtiangles/sec jet flow data with 104« 129x 129 voxels. The second is
and Renderer-Display (Bod) measurediirels/sec To a CT scan of a human head with 25@56x 240 voxels.
measure the network bandwidth between two machine$he third one is an argon bubble dataset with 8856 x

Pipeline Configurations

Config | Reader| Isosuf | Renderer| Disp
30.00 - 1| trout escher| mill sea
2500 | 2 | escher | mill trout sea
. 3 | sea trout | escher | mill
g 20.00 +
% 15.00 Table 1: Pipeline configurations used for testing.
o
& 10.00 -
5.00 - uncertainty.
0.00 ‘ ‘ Our solution is to create a table describing how many
10 10,000 10000000 cells an isosurface with a certain isovalue will intersect.
This can be done at runtime by analyzing the minimum
Number of Triangles (Log Scale) and maximum value of each cell, and incrementing the

tables at each value that falls within this region. This
allows us to approximate how many cells an isosurface
Figure 8: Percentage error of the predicted time for thg|| intersect using a particular isolevel. The advantage
off-screen renderer. Data for graph collected from all mapf this technique is that it can be done by the File Reader
chines on which the off-screen renderer modeling testgith little extra cost. However, even when we know how
were run. many cells are intersected, we still are not certain how
many triangles are generated. That is, assume there are
cells intersected, and 2 triangles per cell on average. Then
256 voxels. Figure 2 gives sample isosurface renderind@e approximate number of triangles is However, the
of each dataset. actual bound on the number of triangles is betweand
4c, so our uncertainty now lies within this region. We still
are left with uncertainty, but it is narrower. Whatever the
5.1 Reader case, in our results we demonstrate that our technique ap-

Both the graph and table in Figure 3 demonstrate that o@f0Ximates quite accurately the number of triangles gen-
simple model for predicting reader performance is ade2rated by an isolevel, as revealed in Figure 4.

guate. The over-estimation of read time for argon bub-

bles is likely due to additional efficiencies for contlnuouss_z_2 Results

reads.
The actual times for the Isosurfacer on Millwood were
5.2 Isosurface Extractor consistantly longer than the predicted times(Fig. 5). This
is likely due to an inaccurat€g, (Eq. 2) measurement
5.2.1 Analytic Uncertainty for troutlake, since the results from other machines did

not share this attribute. Whatever the case, across all ma-

As mentioned in the performance modeling section, th@hines the average percentage error was 5.95% (Fig. 6).

difficult thing about predicting the performance of the
Isosurface Extractor is that the performance depends on

the number of triangles generated. However, itisvery difs 3 Off-screen Renderer

ficult to predict the number of triangles that will be found

prior to execution because this is dependent on both tiéhe accuracy of our performance prediction test results
isolevel parameter and the input data characteristics. Itier the Off-screen Renderer on troutlake are graphed in
especially important to note that the number of triangleEigure 7. Across all machines the average percentage er-
generated are not directly related to dataset size. We an@r was 7.27% (Fig. 8). It is difficult to accurately mea-
able to model the base isosurface extraction time for eacure rendering times that sometimes take small fractions
dataset. But, without knowing the number of triangle®f a second. The smaller the amount of time being mea-
generated by an isolevel, we only know that the perforsured, the less accurate the measurement. This creates
mance will be between the base cost when no surfacedsficulty when trying to find an accurat@enqer Value.
found, and the case where every voxel generates the mae inaccuracy o€.engeris @ major contributor to the er-
imum of five triangles. We need to reduce this range afor.

Predicted Times 6 Conclusions and Future Work
Machine | Reader | Isosuf | Renderer
troutlake | 22.70 3.876 | .1601 Large-scale scientific computing is gradually moving to-
escher 54.17 8.870 | 19.82 ward a Grid-based service model. Thus, appropriate
millwood | 45.5728| 5.783 | .04701 Grid-based visualization tools must be developed to sup-
seaborg | 791.6 371.03| NA port remote, collaborative data analysis making use of

geographically distributed high-performance computing

Table 2: Predicted times for components. Times for unand storage facilities. We have derived and experimen-
used combinations omitted. tally verified an effective component-based analytic per-
formance model. Such a performance model can be used
to automate resource allocation in a Grid-based comput-
ing environment. Future work includes studying compu-

tational and communication requirements of other visual-
ization methods, parallel visualization pipelines, dynamic
Next we predict the performance for the overall pipelinerepartitioning of visualization pipelines, and other perfor-

We combine networking information gathered asmance prediction techniques. In particular, we will com-

described in previous sections with our componenpare this performance modeling technique to the heuris-
performance models. Since we assume that local displag and historical methodologies. Our ultimate goal is to

is fixed, we are only concerned with modeling the perforelevelop a general purpose framework for managing Grid-
mance of the pipeline from the Reader up to deserializingased distributed visualization workflows.

the image data (see Figure 1). Therefore, for our tests the

machine handling the “display” simply deserialized the

image data. Table 1 lists the configurations we used. FAA\CKNnowledgments

all configurations we used the argon bubble dataset and

the same isovalue (50% max). Also, we used a scredlis research has been sponsored in part by the Na

5.4 Pipeline Performance Prediction

size of 500x 500. Thus, tional Science Foundation under contracts ACI9983641
(PECASE award) and ACI0325934 (ITR), and the De-
ny = 41,943 040, partment of Energy under Memorandum Agreements
ne = 186,854, and No. DE-FC02-01ER41202 (SciDAC program) and NO.
np = 250,000. B523578 (ASCI VIEWS). The argon bubble dataset was

provided by the Center for Computational Science and
Engineering at the Lawrence Berkeley National Labo-

In order to predict overall pipeline performance We 4oy The turbulent jet data set was provided by Dr.
first have to predict performance of the individual comgqanert Wilson at the University of lowa.

ponents. We used our machine-specific constants to do
this and list the results in Table 2.

After we collect the network information we can u:seReferences
the following equation to predict the performance of th

pipeline: ?1] Ripeanu, M., lamnitchi, A. and Foster, I. Perfor-

mance Predictions for a Numerical Relativity Pack-
age in Grid Environments. International Journal of
trond - % F gt E:lio Ftrongert Br%d’ 4) Scientific Applications, 14 (4).
[2] Gabrielle Allen, David Angulo, lan Foster, Gerd
))) o Lanfermann, Chuang Liu, Thomas Radke, Ed Sei-
where, as introduced in section 4.4, Bri is the g and John Shalf. The Cactus Worm: Experiments
Reader-Isosurfacer bandwidth (in bytes/sec), Bio is the yih dynamic resource discovery and allocation in a
Isosurfacer-Renderer bandwidth (in tris/sec) and Bod is 4rig environment. International Journal of High Per-
the Renderer-Display bandwidth (in pixels/sec). The val- t5rmance Computing Applications, 15(4):345-358,
ues for all three configurations are listed in a table in 5991 11
Figure 9, as well as the predicted and real times. Our
method correctly ranks the performance of the availablg] C. Liu, L. Yang, I. Foster, and D. Angulo. Design
pipelines, as can be seen in the graph in Figure 9. and evaluation of a resource selection framework for

Predicted and Real Times
Bri Bio Bod Pred | Real 1222] ——
0.50x10° | 0.06x1CP | 1.1x10° | 901.9| 793.7 w00 | e
11x10° | 0.09x1CP | 1.1x10° | 71.6 | 56.2 700 1 B Ppelne Ree Tme
1.6x10° | 0.00x1C° | 0.88x1CF | 87.0 | 83.3 600 |

Time

500
400
300
200
100 +

o es AR
1 2 3
Configuration

Figure 9: For left table, from top to bottom, predicted and real times for pipeline configurations 1, 2 and 3. Graph at

rig

[4]

[5]

[6]

[7]

(8]

9]

ht shows the predicted and real times for visualization pipeline.

grid applications. In Proceedings of the 11th IEEH10] J.S. Vetter, D.A. Reed. 1999. Managing Perfor-
International Symposium on High Performance Dis- mance Analysis with Dynamic Statistical Projection
tributed Computing (HPDC11), July 2002. Pursuit. Proceedings of SC 99, Portland, OR.

E. W. Bethel, J. Shalf. 2003. Grid-Distributed Visual-[11] I. Foster, C. Kesselman(Editors). 1999. The Grid:
izations Using Connectionless Protocols. IEEE Com- Blueprint for a New Computing Infrastructure. Mor-
puter Graphics and Applications. 23(2):51-59. gan Kaufmann.

A. Norton, A. Rockwood. 2003. Enabling View- [12] Richard Vuduc, Attila Gyulassy, James W. Dem-
Dependent Progressive Volume Visualization on the mel, Katherine A. Yelick. Memory Hierarchy Opti-
Grid. IEEE Computer Graphics and Applications. mizations and Performance Bounds for Sparsax.
23(2):22-31. 2003. ICCS 2003: Workshop on Parallel Linear Al-

. .) gebra, Melbourne, Australia.
W. Lorensen and H. Cline. Marching cubes: A high

resolution 3d surface construction algorithm. Com{13] Brian R. Gaeke, Parry Husbands, Xiaoye S. Li,
puter Graphics, 21(4):163-169, 1987. Leonid Oliker, Katherine A. Yelick, Rupak Biswas.
2002. Memory-Intensive Benchmarks: IRAM vs.
Cache-Based Machines. International Parallel and
Distributed Processing Symposium.

H. Dail, F. Berman, H. Casanova. 2003. A decou-
pled scheduling approach to Grid application devel-
opment environments. Journal of Parallel and Dis-
tributed Computing. 63:505-524 [14] A. Snavely, N. Wolter, L. Carrington. 2001. Mod-

) eling Application Performance by Converting Ma-
R. Raman, M. Livny, M.H. Solomon. 1999. Match- -nine signatures with Application Profiles. IEEE

making: an extensible framework for distributed re- 4th annual Workshop on Workload Characterization,
source management. Cluster Computing. 2(2):129- Austin. TX.

138.

R. Wolski, N.T. Spring, J. Hayes. 1999. The Net-
work Weather Service: a distributed resource perfor-
mance forecasting service for metacomputing. Jour-
nal of Future Generation Computing Systems. 15(5-
6):757-768.

